Part Number Hot Search : 
08M82VLA T48ALV HB314175 74688 MCP6054T PC78L05 3904TP 74HC149
Product Description
Full Text Search
 

To Download ADA4691-2 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  dual, low power, wideband, low noise, rail-to-rail output, operational amplifiers ADA4691-2/ada4692-2 rev. a information furnished by analog devices is believed to be accurate and reliable. however, no responsibility is assumed by analog devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. specifications subject to change without notice. no license is granted by implication or otherwise under any patent or patent rights of analog devices. trademarks and registered trademarks are the property of their respective owners. one technology way, p.o. box 9106, norwood, ma 02062-9106, u.s.a. tel: 781.329.4700 www.analog.com fax: 781.461.3113 ?2009 analog devices, inc. all rights reserved. features low power: 200 a typical, 250 a maximum low distortion: 0.003% thd + n low noise: 16 nv/hz typical 3.9 mhz bandwidth slew rate: 1.4 v/s typical offset voltage: 500 v typical low offset voltage drift: 4 v/c maximum very low input bias currents: 0.5 pa typical 2.7 v to 5 v single supply or 1.35 v to 2.5 v dual supply applications portable audio: mp3, pda, smart phone, notebook portable instrumentation portable medical devices photodiode amplifiers sensor amplifiers low-side current sense adc drivers active filters sample-and-hold automotive sensors pin configurations out a 1 ?in 2 +in 3 v? 4 v+ 8 out b 7 ?in b 6 ada4692-2 top view (not to scale) +in b 5 07950-001 0-002 6 7 2 1 3 +in figure 1. 8-lead soic_n (r-8) a 0795 a ?in a v? 8 +in b ?in b out b 5 d b 4 d a s s top view (not to scale) ADA4691-2 10 9 out v+ figure 2. 10-lead lfcsp (cp-10-11) general description the ADA4691-2 and ada4692-2 are dual, rail-to-rail output, single-supply amplifiers featuring low power, wide bandwidth, and low noise. the ADA4691-2 has two independent shutdown pins, allowing further reduction in supply current. these amplifiers are ideal for a wide variety of applications. audio preamps, filters, ir/photodiode amplifiers, charge amps, and high impedance sensors all benefit from this combination of performance features. applications for these amplifiers include consumer audio personal players with low noise and low distortion that provide enough gain and slew rate response over the audio band at low power. industrial applications with high impedance sensors, such as pyroelectric sensors and other ir sensors, benefit from the high impedance input, low offset drift, and enough bandwidth and response for low gain applications. the ADA4691-2 and ada4692-2 are specified over the extended industrial temperature range (?40c to +125c). the ADA4691-2 is available in a 10-lead lfcsp package, and the ada4692-2 is available in an 8-lead soic package.
ADA4691-2/ada4692-2 rev. a | page 2 of 16 table of contents features .............................................................................................. 1 ? applications ....................................................................................... 1 ? pin configurations ........................................................................... 1 ? general description ......................................................................... 1 ? revision history ............................................................................... 2 ? specifications ..................................................................................... 3 ? electrical characteristics2.7 v operation ............................ 3 ? electrical characteristics5 v operation................................ 4 ? absolute maximum ratings ............................................................ 6 ? thermal resistance .......................................................................6 ? esd caution...................................................................................6 ? typical performance characteristics ..............................................7 ? shutdown operation ...................................................................... 15 ? input pin characteristics ........................................................... 15 ? input threshold .......................................................................... 15 ? outline dimensions ....................................................................... 16 ? ordering guide .......................................................................... 16 ? revision history ADA4691-2/ada4692-2 revision history 6/09rev. 0 to rev. a added ADA4691-2 information throughout .............................. 1 added figure 2, renumbered subsequent figures ...................... 1 changes to table 1 ............................................................................ 3 changes to table 2 ............................................................................ 4 changes to table 4 ............................................................................ 6 changes to captions for figure 40, figure 41, figure 43, figure 44 .......................................................................................... 13 added shutdown operations section ......................................... 15 updated outline dimensions ....................................................... 16 changes to ordering guide .......................................................... 16 ada4692-2 revision history 3/09revision 0: initial version
ADA4691-2/ada4692-2 rev. a | page 3 of 16 specifications electrical characteristics2.7 v operation v sy = 2.7 v, v cm = v sy /2, t a = 25c, unless otherwise specified. table 1. parameter symbol test conditions/comments min typ max unit input characteristics offset voltage v os v cm = ?0.3 v to +1.6 v 0.5 2.5 mv v cm = ?0.1 v to +1.6 v; ?40c < t a < +125c 3.5 mv input bias current i b 0.5 5 pa ada4691 ?40c < t a < +125c 350 pa ada4692 ?40c < t a < +125c 325 pa input offset current i os 1 5 pa ?40c < t a < +125c 225 pa input voltage range ?40c < t a < +125c ?0.3 +1.6 v common-mode rejection ratio cmrr v cm = ?0.3 v to +1.6 v 70 90 db ada4691 v cm = ?0.1 v to +1.6 v; ?40c < t a < +125c 62 db ada4692 v cm = ?0.1 v to +1.6 v; ?40c < t a < +125c 70 db large signal voltage gain a vo r l = 2 k, v out = 0.5 v to 2.2 v 90 100 db ada4691 ?40c < t a < +85c 80 db ada4692 ?40c < t a < +85c 85 ada4691 ?40c < t a < +125c 67 db ada4692 ?40c < t a < +125c 73 r l = 600 , v out = 0.5 v to 2.2 v 85 95 db offset voltage drift ?v os /?t ?40c < t a < +125c 0.8 3 v/c input capacitance c in differential mode c indm 2.5 pf common mode c incm 7 pf logic high voltage (enabled) v ih ?40c < ta < +125c +1.6 v logic low voltage (power-down) v il ?40c < ta < +125c 0.5 v logic input current (per pin) i in ?40c < ta < +125c, 0 v vsd 2.7 v 1 a output characteristics output voltage high v oh r l = 2 k to gnd 2.65 2.67 v ?40c < t a < +125c 2.6 v r l = 600 to gnd 2.55 2.59 v ?40c < t a < +125c 2.5 v output voltage low v ol r l = 2 k to v sy 24 30 mv ?40c < t a < +125c 40 mv r l = 600 to v sy 78 95 mv ?40c < t a < +125c 125 mv short-circuit current i sc v out = v sy or gnd 15 ma closed-loop output impedance z out f = 1 mhz, a v = ?100 372 output pin leakage current ?40c < ta < +125c, shutdown active, v sd = v ss 1 na power supply power supply rejection ratio psrr v s = 2.7 v to 5.5 v 80 90 db ?40c < t a < +125c 75 db supply current per amplifier i sy v out = v sy /2 165 200 a ADA4691-2 ?40c < t a < +125c 240 a ada4692-2 ?40c < t a < +125c 225 a supply current shutdown mode i sd all amplifiers shut down, v shutdown = v ss 10 na ? 40c < ta < +125c 2 a
ADA4691-2/ada4692-2 rev. a | page 4 of 16 parameter symbol test conditions/comments min typ max unit dynamic performance slew rate sr r l = 600 , c l = 20 pf, a v = +1 1.1 v/s slew rate sr r l = 2 k, c l = 20 pf, a v = +1 1.4 v/s settling time to 0.1% t s step = 0.5 v, r l = 2 k, 600 1 s gain bandwidth product ada4691 gbp r l = 1 m, c l = 35 pf, a v = +1 3.6 mhz gain bandwidth product ada4692 gbp r l = 1 m, c l = 35 pf, a v = +1 3.9 mhz phase margin m r l = 1 m, c l = 35 pf, a v = +1 49 degrees turn-on, turn-off time r l = 600 1 s noise performance distortion thd + n a v = ?1, r l = 2 k, f = 1 khz, v in rms = 0.15 v rms 0.009 % a v = ?1, r l = 600 , f = 1 khz, v in rms = 0.15 v rms 0.01 % a v = +1, r l = 2 k, f = 1 khz, v in rms = 0.15 v rms 0.006 % a v = +1, r l = 600 , f = 1 khz, v in rms = 0.15 v rms 0.007 % voltage noise e n p-p f = 0.1 hz to 10 hz 3.1 v p-p voltage noise density e n f = 1 khz 16 nv/hz f = 10 khz 13 nv/hz electrical characteristics5 v operation v sy = 5 v, v cm = v sy /2, t a = 25c, unless otherwise specified. table 2. parameter symbol test conditions/comments min typ max unit input characteristics offset voltage v os v cm = ?0.3 v to +3.9 v 0.5 2.5 mv v cm = ?0.1 v to +3.9 v; ?40c < t a < +125c 3.5 mv input bias current i b 0.5 5 pa ?40c < t a < +125c 360 pa input offset current i os 1 5 pa ?40c < t a < +125c 260 pa input voltage range ?40c < t a < +125c ?0.3 +3.9 v common-mode rejection ratio cmrr v cm = ?0.3 v to +3.9 v 75 98 db ADA4691-2 v cm = ?0.1 v to +3.9 v; ?40c < t a < +125c 68 db ada4629-2 v cm = ?0.1 v to +3.9 v; ?40c < t a < +125c 75 db large signal voltage gain a vo r l = 2 k, v o = 0.5 v to 4.5 v, v cm = 0 v 95 110 db ADA4691-2 ?40c < t a < +85c 80 db ada4692-2 ?40c < t a < +85c 90 db ADA4691-2 ?40c < t a < +125c 75 db ada4692-2 ?40c < t a < +125c 80 db ADA4691-2 and ada46920-2 r l = 600 , v o = 0.5 v to 4.5 v, v cm = 0 v 90 100 db offset voltage drift ?v os /?t ?40c < t a < +125c 1 4 v/c input capacitance differential mode c indm 2.5 pf common mode c incm 7 pf logic high voltage (enabled) v ih ?40c < ta < +125c +2.0 v logic low voltage (power-down) v il ?40c < ta < +125c 0.8 v logic input current (per pin) i in ?40c < ta < +125c, 0 v vsd 2.7 v 1 a output characteristics output voltage high v oh r l = 2 k 4.95 4.97 v ?40c t a +125c 4.90 v r l = 600 to gnd 4.85 4.88 v
ADA4691-2/ada4692-2 rev. a | page 5 of 16 parameter symbol test conditions/comments min typ max unit ?40c t a +125c 4.80 v output voltage low v ol r l = 2 k 28 35 mv ?40c t a +125c 45 mv r l = 600 90 110 mv ?40c t a +125c 140 mv short-circuit limit i sc v out = v sy or gnd 55 ma closed-loop output impedance z out ADA4691-2, f = 1 mhz, a v = ?100 364 closed-loop output impedance z out ADA4691-2, f = 1 mhz, a v = ?100 246 output pin leakage current ?40c < ta < +125c, shutdown active, v sd = v ss 1 na power supply power supply rejection ratio psrr v sy = 2.7 v to 5.5 v 80 90 db ?40c t a +125c 75 db supply current per amplifier i sy v out = v sy /2 180 225 a ADA4691-2 ?40c t a +125c 275 a ada4692-2 ?40c t a +125c 250 a supply current shutdown mode i sd all amplifiers shutdown, v shutdown = v ss 10 na ?40c t a +125c 2 ua dynamic performance slew rate sr r l = 2 k, 600 , c l = 20 pf, a v = +1 1.3 v/s settling time to 0.1% t s v in = 2 v step, r l = 2 k or 600 1.5 s gain bandwidth product gbp r l = 1 m, c l = 35 pf, a v = +1 3.6 mhz phase margin m r l = 1 m, c l = 35 pf, a v = +1 52 degrees turn-on, turn-off time r l = 600 1 s noise performance distortion thd + n a v = ?1, r l = 2 k, f = 1 khz, v in rms = 0.8 v rms 0.008 % a v = ?1, r l = 600 , f = 1 khz, v in rms = 0.8 v rms 0.006 % a v = +1, r l = 2 k, f = 1 khz, v in rms = 0.8 v rms 0.003 % a v = +1, r l = 600 , f = 1 khz, v in rms = 0.8 v rms 0.001 % voltage noise e n p-p f = 0.1 hz to 10 hz 3.2 v p-p voltage noise density e n f = 1 khz 16 nv/hz e n f = 10 khz 13 nv/hz
ADA4691-2/ada4692-2 rev. a | page 6 of 16 absolute maximum ratings table 3. parameter rating supply voltage 6 v input voltage v ss ? 0.3 v to v dd +0.3 v input current 1 10 ma shutdown pin rise/fall times 50 s maximum differential input voltage 2 v sy output short-circuit duration to gnd indefinite temperature storage temperature range ?65c to +150c operating temperature range ?40c to +125c junction temperature range ?65c to +150c lead temperature (soldering, 60 sec) 300c 1 input pins have clamp diodes to the supply pins. limit the input current to 10 ma or less whenever the input signal exceeds the power supply rail by 0.3 v. 2 differential input voltage is limited to 5 v or the supply vo ltage, whichever is less. stresses above those listed under absolute maximum ratings may cause permanent damage to the device. this is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. exposure to absolute maximum rating conditions for extended periods may affect device reliability. thermal resistance ja is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages and measured using a standard 4-layer board, unless otherwise specified. table 4. thermal resistance package type ja jc unit 8-lead soic_n (r-8) 155 45 c/w 10-lead lfcsp (cp-10-11) 88 32 c/w esd caution
ADA4691-2/ada4692-2 rev. a | page 7 of 16 typical performance characteristics t a = 25c, unless otherwise noted. 350 300 250 200 150 100 50 number of amplifiers ada4692-2 v sy = 2.7v t a = 25c ?0.3v v cm +1.6v signifies center of bin 07950-003 figure 3. input offset voltage distribution 30 25 20 15 10 5 number of amplifiers 0 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 tcv os (v/c) ada4692-2 v sy = 1.35v ?40c < t a < +125c signifies center of bin 07950-004 figure 4. input offset voltage drift distribution 2.0 ?1.5 ?1.0 ?0.5 0 0.5 1.0 1.5 v os (mv) ?2.0 ?0.5 2.5 2.0 1.5 1.0 0.5 0 v cm (v) ada4692-2 v sy = 2.7v t a = 25c 07950-005 700 600 500 400 300 200 100 0 ?2.0 ?1.6 ?1.2 ?0.8 ?0.4 0 0.4 0.8 1.2 1.6 2.0 number of amplifiers v os (mv) figure 5. input offset voltage vs. common-mode voltage ada4692-2 v sy = 5v t a = 25c ?0.3v v cm +3.9v signifies center of bin 07950-006 figure 6. input offset voltage distribution 30 25 20 15 10 5 0 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 number of amplifiers tcv os (v/c) ada4692-2 v sy = 2.5v ?40c < t a < +125c signifies center of bin 07950-007 figure 7. input offset voltage drift distribution 2.0 ?2.0 ?1.5 ?1.0 ?0.5 0 0.5 1.0 1.5 ?0.5 5.0 2.02.53.03.54.04.5 1.51.00.5 0 v os (mv) v cm (v) ada4692-2 v sy = 5v t a = 25c 07950-008 figure 8. input offset voltage vs. common-mode voltage
ADA4691-2/ada4692-2 rev. a | page 8 of 16 1k 0.1 1 10 100 0.01 i b (pa) 25 12511510595857565554535 temperature (c) ada4692-2 v sy = 1.35v t a = 25c average 20 channels 1k 0.01 0.1 1 10 100 25 12511510595857565554535 i b (pa) temperature (c) ada4692-2 v sy = 2.5v t a = 25c average 20 channels 07950-00 9 figure 9. input bias current vs. temperature 1k 0.01 0.1 1 10 100 07950-012 0.001 . 7 i b (pa) 02 2.42.11.81.5 1.2 0.90.60.3 v cm (v) ada4692-2 v sy = 2.7v average 20 channels t a = 125c t a = 85c t a = 25c 0 07950-01 figure 10. input bias current vs. common-mode voltage 10k 0.1 1 10 100 1k output saturation voltage (mv) figure 12. input bias current vs. temperature 1k 0.01 0.1 1 10 100 05 . 0 4.5 4.0 3.53.02.52.01.51.0 0.5 i b (pa) v cm (v) t a = 125c ada4692-2 v sy = 5v average 20 channels t a = 85c t a = 25c 07950-013 figure 13. input bias current vs. common-mode voltage 10k 0.1 1 10 100 1k output saturation voltage (mv) 0.01 0.001 100 10 1 0.1 0.01 i load (ma) 0.01 0.001 100 10 1 0.1 0.01 i load (ma) ada4692-2 v sy = 1.35v v oh = (v+) ? v out (sourcing) 07950-011 t a = +125c t a = +85c t a = +25c t a = ?40c figure 11. output voltage (v oh ) to supply rail vs. load current ada4692-2 v sy = 2.5v v oh = (v+) ? v out (sourcing) 07950-014 t a = +125c t a = ?40c t a = +85c t a = +25c figure 14. output voltage (v oh ) to supply rail vs. load current
ADA4691-2/ada4692-2 rev. a | page 9 of 16 10k 0.01 0.1 1 10 100 1k output saturation voltage (mv) 10k 0.01 0.1 1 10 100 1k 0.001 100 10 1 0.1 0.01 output saturation voltage (mv) i load (ma) 0.001 100 10 1 0.1 0.01 i load (ma) ada4692-2 v sy = 1.35v v ol = v out ? (v?) (sinking) 5 ada4692-2 v sy = 2.5v v ol = v out ? (v?) (sinking) 07950-018 07950-01 t a = +125c t a = +85c t a = +25c t a = ?40c t a = +125c t a = +85c t a = +25c t a = ?40c figure 15. output voltage (v ol ) to supply rail vs. load current 120 100 80 60 40 20 0 ?20 120 100 80 60 40 20 0 ?20 gain (db) phase (degrees) figure 18. output voltage (v ol ) to supply rail vs. load current 120 100 80 60 40 20 0 ?20 ?40 ?60 120 100 80 60 40 20 0 ?20 ?40 ?60 1k 10m 1m 100k 10k gain (db) phase (degrees) frequency (hz) ?40 ?60 ?40 ?60 1k 10m 1m 100k 10k frequency (hz) ada4692-2 v = 1.35v c l = 20pf c l = 200pf sy t a = 25c a v = ?1 ada4692-2 v sy = 2.5v t a = 25c a v = ?1 c l = 20pf c l = 200pf 07950-021 figure 16. open-loop gain and phase vs. frequency 50 ?10 0 10 20 30 40 gain (db) 07950-024 figure 19. open-loop gain and phase vs. frequency 50 ?20 ?10 0 10 20 30 40 gain (db) ?30 ?20 10 100 1k 10k 100k 1m 10m frequency (hz) ada4692-2 v = 1.35v sy t a = 25c r l = 600 ? a v = +100 a v = +10 a v = +1 a v = +100 a v = +10 a v = +1 ?30 10 100 1k 10k 100k 1m 10m frequency (hz) ada4692-2 v sy = 2.5v t a = 25c r = 600 ? l 07950-025 figure 20. closed-loop gain vs. frequency 07950-022 figure 17. closed-loop gain vs. frequency
ADA4691-2/ada4692-2 rev. a | page 10 of 16 1k 0.1 1 10 100 1k 0.01 0.1 1 10 100 100 1k 10k 100k 1m 10m z out ( ? ) frequency (hz) 0.01 z out ( ? ) 100 1k 10k 100k 1m 10m frequency (hz) ada4692-2 v sy = 1.35v t a = 25c a v = ?100 a v = ?10 a v = ?1 a v = ?100 a v = ?10 a v = ?1 ada4692-2 v sy = 2.5v t a = 25c 07950-02 3 figure 21. output im pedance vs. frequency 120 100 80 60 40 20 07950-026 0 cmrr (db) 100 1k 10k 100k 1m 10m frequency (hz) 07950-02 7 ada4692-2 v sy = 1.35v t a = 25c figure 22. cmrr vs. frequency 100 80 60 40 20 0 psrr (db) figure 24. output im pedance vs. frequency 120 100 80 60 40 20 0 100 1k 10k 100k 1m 10m cmrr (db) frequency (hz) ada4692-2 v sy = 2.5v t a = 25c 07950-030 figure 25. cmrr vs. frequency 100 80 60 40 20 ?20 0 psrr (db) ?20 100 1k 10k 100k 1m 10m frequency (hz) psrr+ psrr? 07950-028 ada4692-2 v sy = 1.35v t a = 25c figure 23. psrr vs. frequency psrr? psrr+ ada4692-2 v sy = 2.5v t a = 25c 100 1k 10k 100k 1m 10m frequency (hz) 07950-03 1 figure 26. psrr vs. frequency
ADA4691-2/ada4692-2 rev. a | page 11 of 16 1k 100 1k 100 10 0.1 1 10 100 1k 10k voltage noise density (nv/ hz) frequency (hz) 10 voltage noise density (nv/ hz) 0.1 1 10 100 1k 10k frequency (hz) ada4692-2 v sy = 1.35v t a = 25c ada4692-2 v sy = 2.5v t a = 25c 07950-02 9 figure 27. voltage noise density vs. frequency 50 10 15 20 25 30 35 40 45 07950-032 0 5 overshoot (%) 10 100 1k capacitance (pf) ada4692-2 v sy = 1.35v v in = 100mv p-p a v = +1 r l = 2k ? t a = 25c overshoot+ overshoot? 07950-033 time (2s/div) figure 28. small signal overshoot vs. load capacitance output (500mv/div) ada4692-2 v sy = 1.35v gain = +1 figure 30. voltage noise density vs. frequency 45 0 5 10 15 20 25 30 35 40 10 100 1k overshoot (%) capacitance (pf) ada4692-2 v sy = 2.5v v in = 100mv p-p a v = +1 r l = 2k ? t a = 25c overshoot+ overshoot? 07950-036 figure 31. small signal overshoot vs. load capacitance ada4692-2 v sy = 2.5v gain = +1 r l = 2k ? , c l = 300pf t = 25c a 07950-03 time (2s/div) r l = 2k ? c l = 300pf t a = 25c 7 output (500mv/div) figure 32. large signal transient response 07950-034 figure 29. large signal transient response
ADA4691-2/ada4692-2 rev. a | page 12 of 16 t ada4692-2 v sy = 1.35v gain = +1 r l = 2k ? c l = 200pf t = 25c a 07950- time (2s/div) 035 output (20mv/div) figure 33. small signal transient response ada4692-2 v sy = 2.5v gain = +1 r l = 2k ? c l = 200pf t a = 25c 07950-038 time (2s/div) output (20mv/div) ada4692-2 v sy = 1.35v gain = +1m t = 25c a 0 7950-04 time (1s/div) 0 output (1v/div) figure 34. 0.1 hz to 10 hz noise 250 200 150 100 50 0 05 4.5 4.0 3.53.02.52.01.51.0 0.5 i sy /channel (a) v sy (v) . 0 ada4692-2 07950-135 t a = +125c t a = +85c t a = +25c t a = ?40c figure 35. supply current per amplifier vs. supply voltage figure 36. small signal transient response ada4692-2 v sy = 2.5v gain = +1m t a = 25c 07950-043 time (1s/div) output (1v/div) figure 37. 0.1 hz to 10 hz noise 250 225 200 175 150 i sy /amplifier (a) 125 ?40 12511095806550 35 20 5 ?10 ?25 temperature (c) ada4692-2 v sy = 2.5v v sy = 1.35v 07950-138 figure 38. supply current per channel vs. temperature
ADA4691-2/ada4692-2 rev. a | page 13 of 16 1 0.1 0.01 0.001 k thd + n (%) 1 0.1 0.01 0.001 10 100 1k 10k 20k thd + n (%) frequency (hz) 10 100 1k 10k 20 frequency (hz) ada4692-2 v sy = 1.35v a v = ?1 t a = 25c 07950-042 ada4692-2 v sy = 2.5v a v = ?1 t a = 25c 07950-045 r l = 600 ? r l = 2k ? r l = 600 ? r l = 2k ? figure 39. thd + noise vs. frequency ada4692-2 v sy = 1.35v t = 25c 050 50mv/div 1v/div a 07950- time (4s/div) figure 40. positive overload recovery ada4692-2 v sy = 1.35v t a = 25c 07950-052 time (4s/div) 50mv/div 1v/div figure 41. negative overload recovery figure 42. thd + noise vs. frequency ada4692-2 v sy = 2.5v a v = ?100 t a = 25c 07950-051 time (4s/div) 50mv/div 1v/div figure 43. positive overload recovery ada4692-2 v sy = 2.5v a v = ?100 3 50mv/div 1v/div t a = 25c 07950-05 time (4s/div) figure 44. negative overload recovery
ADA4691-2/ada4692-2 rev. a | page 14 of 16 ada4692-2 v sy = 1.35v r l = 2k ? t = 25c 054 200mv/div 10mv/div a 07950- time (1s/div) 07950-055 time (1s/div) 1v/div 20mv/div error band figure 45. positive settling time to 0.1% 07950- time (1s/div) 056 200mv/div 10mv/div error band ada4692-2 v sy = 1.35v r l = 2k ? t = 25c a figure 46. negative settling time to 0.1% ? 80 ?90 ?100 ? 110 ?120 ?130 ?140 100 1k 10k 100k channel separation (db) frequency (hz) 07950-140 ada4692-2 v sy = 2.5v v in = 2.8v p-p a v = +1 t a = 25c v? v+ v? v+ u2 r2 1k? r1 100k? 6 7 5 v+ v? v+ v? 0 0 0 0 + ? v in r3 600 ? u1 2 3 cs (db) = 20 log (v out /100 = v in ) figure 47. channel separation vs. frequency error band ada4692-2 v sy = 2.5v r l = 2k ? t a = 25c figure 48. positive settling time to 0.1% 07950-057 time (1s/div) 1v/div 20mv/div error band ada4692-2 v sy = 2.5v r l = 2k ? t a = 25c figure 49. negative settling time to 0.1%
ADA4691-2/ada4692-2 rev. a | page 15 of 16 shutdown operation input pin characteristics the ADA4691-2 has a classic cmos logic inverter input for each shutdown pin, as shown in figure 50 . 07950-152 time (400s/div) i sy = 724mv/1k = 724a sda, b dut output 7950-149 v dd p-channel input output 0 n-channel figure 50. cmos inverter with slowly changing inputs, the top transistor and bottom transistor may be slightly on at the same time, increasing the supply current. this can be avoided by driving the input with a digital logic output having fast rise and fall times. figure 51 through figure 53 show the supply current for both sections switching simultaneously with rise times of 1 s, 10 s, and 1 ms. clearly, the rise and fall times should be faster than 10 us. using an rc time constant to enable/disable shutdown is not recommended. 07 time (400s/div) 950-150 i sy = 196mv/1k = 196a sda, b dut output figure 51. shutdown pi n rise time = 1 s 07950-15 time (400s/div) 1 i sy = 192mv/1k = 196a sda, b dut output figure 52. shutdown pin rise t ime = 10 s figure 53. shutdown pin rise time = 1 ms input threshold the input threshold is approximately 1.2 v above the v? pin when operating on ground and +5 v, and 0.9 v when operating on 2.7 v (see figure 54 and figure 55 ). the threshold is rela- tively stable over temperature. for operation on split supplies, the logic swing may have to be level shifted. 500 450 400 350 300 250 200 150 100 50 0 05 . 0 4.5 4.0 3.53.02.52.01.51.0 0.5 i sy (a) sd voltage (v) ADA4691-2 t a = 25c v sy = 5v 07950-155 t a = +125c t a = +25c t a = ?40c t a = +85c figure 54. supply current vs. temperature, v sy = 5 v 300 250 200 150 100 . 7 i sy (a) 50 0 02 2.42.11.81.5 1.2 0.90.60.3 sd voltage (v) ADA4691-2 v sy = 2.7v 07950-156 t a = +125c t a = ?40c t a = +85c t a = +25c figure 55. supply current vs. temperature, v sy = 2.7 v
ADA4691-2/ada4692-2 rev. a | page 16 of 16 controlling dimensions are in millimeters; inch dimensions (in parentheses) are rounded-off millimeter equivalents for reference only and are not appropriate for use in design. compliant to jedec standards ms-012-a a 012407-a outline dimensions 0.25 (0.0098) 0.17 (0.0067) 1.27 (0.0500) 0.40 (0.0157) 0.50 (0.0196) 0.25 (0.0099) 45 8 0 1.75 (0.0688) 1.35 (0.0532) seating plane 0.25 (0.0098) 0.10 (0.0040) 4 1 85 5.00 (0.1968) 4.80 (0.1890) 4.00 (0.1574) 3.80 (0.1497) 1.27 (0.0500) bsc 6.20 (0.2441) 5.80 (0.2284) 0.51 (0.0201) 0.31 (0.0122) coplanarity 0.10 figure 56. 8-lead standard small outline package [soic_n] narrow body (r-8) dimensions shown in millimeters and (inches) 081308-d top view 10 9 1 3 4 5 6 8 0.30 0.25 0.18 bottom view pin 1 index area 2.00 bsc sq seating plane 0.60 0.55 0.50 0.20 ref 0.05 max 0.02 nom 0.50 0.45 0.40 0.50 bsc p i n 1 i n d i c a t o r coplanarity 0.05 figure 57. 10-lead lead frame chip scale package [lfcsp_uq] 2 mm 2 mm body, ultra thin quad (cp-10-11) dimensions shown in millimeters ordering guide model temperature range package descri ption package option branding code ADA4691-2acpz-r7 1 ?40c to +125c 10-lead_lfcsp_uq cp-10-11 a2 ADA4691-2acpz-rl 1 ?40c to +125c 10-lead_lfcsp_uq cp-10-11 a2 ADA4691-2acpz-r2 1 ?40c to +125c 10-lead_lfcsp_uq cp-10-11 a2 ada4692-2arz 1 ?40c to +125c 8-lead soic_n r-8 ada4692-2arz-r7 1 ?40c to +125c 8-lead soic_n r-8 ada4692-2arz-rl 1 ?40c to +125c 8-lead soic_n r-8 1 z = rohs compliant part. ?2009 analog devices, inc. all rights reserved. trademarks and registered trademarks are the prop erty of their respective owners. d07950-0-6/09(a)


▲Up To Search▲   

 
Price & Availability of ADA4691-2

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X